gaussian¶
- dnois.sensor.gaussian(signal: Tensor, sigma: float | tuple[float, float] | Tensor, noise_only: bool = False, dims: int | Sequence[int] = 0) Tensor ¶
Applying gaussian noise to signal:
\[\tilde{\mathbf{x}}=\mathbf{x}+\mathbf{n}, \mathbf{n}\sim\mathcal{N}(0,\sigma^2\mathbf{I}).\]- Parameters:
signal (Tensor) – Input signal.
sigma (float | tuple[float, float] | Tensor) – Standard deviation (std) of the gaussian noise. Must be broadcastable with
signal
if a Tensor. If a 2-tuple of float(min, max)
, the resulted std will vary along dimensionsdims
and follows a uniform distribution in this range.noise_only (bool) – If
True
, return noise rather than noisy signal. Default:False
.dims (int | Sequence[int]) – Dimensions with varied standard deviation. See description for
sigma
. Default:0
.
- Returns:
Noisy signal.
- Return type:
Tensor