fresnel_pr

dnois.optics.fresnel_pr(*args, **kwargs) Real | Tensor

Computes Fresnel’s equation for p-polarized reflected wave:

\[\frac{E_\text{p,r}}{E_\text{p,i}}=\frac{\tan(\theta_\text{i}-\theta_\text{t})} {\tan(\theta_\text{i}+\theta_\text{t})}\]
dnois.optics.fresnel_pr(incident_angle, refracted_angle)

Caution

This version cannot handle normal incidence, i.e. \(\theta_i=\theta_t=0\) and hence the denominator is zero.

Parameters:
  • incident_angle – Incident angle \(\theta_\text{i}\).

  • refracted_angle – Refracted angle \(\theta_\text{t}\).

dnois.optics.fresnel_pr(incident_angle, *, n1, n2)

Note

This version handles normal incidence, i.e. \(\theta_i=\theta_t=0\) correctly, in which case the result is \((n_2-n_1)/(n_2+n_1)\).

Parameters:
  • incident_angle – Incident angle \(\theta_\text{i}\).

  • n1 – Refractive index \(n_1\) in incident medium.

  • n2 – Refractive index \(n_2\) in refractive medium.

Returns:

Ratio of electric intensity amplitude of reflected wave to that of incident wave.